du liest...
Catechin, Wirkstoffe


Dosis: 2-8g


1.   Dysbakterie
2.   Arthrose
3.   Krebs
4.   Alzheimer
5.   Sarcopenie
6.   Diabetes
7.   Covid-19
8.   Hypercholesterinämie
9.   Adipositas
10. Viruskrankheiten
11. Depressionen
12. Neurodegenerative Krankheiten
13. Gichtanfall
14. Kardiomyopathie
15. Aktinische Keratose
16. Alterung
17. Hypertonie
18. Arteriosklerose

1.  Dysbakterie

Curcumin, Quercetin, Catechins and Metabolic Diseases: The Role of Gut Microbiota

In this review, we present evidence supporting the structural changes that occur after metabolic reactions in PPs (curcumin, quercetin, and catechins) and their effect on GM composition that leads to improving overall gut health and helping to ameliorate metabolic disorders.

2. Arthrose

Intra-Articular Injection of (-)-Epigallocatechin 3-Gallate to Attenuate Articular Cartilage Degeneration by Enhancing Autophagy in a Post-Traumatic Osteoarthritis Rat Model.

In conclusion, intra-articular injection of EGCG after ACL injury inhibited the joint inflammation and cartilage degradation, thereby increasing joint function. EGCG treatment also reduced the chondrocyte apoptosis, possibly by activating autophagy. These findings suggested that EGCG may be a potential disease-modifying drug for preventing OA progression.

Impacts of Green Tea on Joint and Skeletal Muscle Health: Prospects of Translational Nutrition.

This review covers (i) the prevalence and etiology of osteoarthritis and sarcopenia, such as excessive inflammation and oxidative stress, mitochondrial dysfunction, and reduced autophagy; (ii) the effects of green tea catechins on joint health by downregulating inflammatory signaling mediators, upregulating anabolic mediators, and modulating miRNAs expression, resulting in reduced chondrocyte death, collagen degradation, and cartilage protection; (iii) the effects of green tea catechins on skeletal muscle health via maintaining a dynamic balance between protein synthesis and degradation and boosting the synthesis of mitochondrial energy metabolism, resulting in favorable muscle homeostasis and mitigation of muscle atrophy with aging; and (iv) the current study limitations and future research directions.

3. Krebs

3.1. Brustkrebs

  • Green Tea Catechins Induce Inhibition of PTP1B Phosphatase in Breast Cancer Cells with Potent Anti-Cancer Properties: In Vitro Assay, Molecular Docking, and Dynamics Studies.

From the tested compounds, epigallocatechin and epigallocatechin gallate were the most effective inhibitors of the MCF-7 cell viability. Moreover, epigallocatechin was also the strongest inhibitor of PTP1B activity. Computational analysis allows us also to conclude that epigallocatechin is able to interact and bind to PTP1B. Our results suggest also the most predicted binding site to epigallocatechin binding to PTP1B.    

  • SAHA and EGCG Promote Apoptosis in Triple-negative Breast Cancer Cells, Possibly Through the Modulation of cIAP2.

The compounds were able to decrease the expression of cIAP2 while increasing the expression of pro-apoptotic caspase 7. There were also changes in histone modifications, suggesting a role of epigenetic mechanisms in these changes in expression of cIAP2. These changes resulted in an increase in apoptosis. SAHA and EGCG were also capable of limiting TNBC cell migration across a fibronectin (FN) matrix.

3.2. Bronchialkrebs

Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway.

Nano-EGCG may inhibit lung cancer cell proliferation, colony formation, migration, and invasion through the activation of AMPK signaling pathways. This novel mechanism of nano-EGCG suggests its application in lung cancer prevention and treatment.

4. Alzheimer

  • Effects of Matcha Green Tea Powder on Cognitive Functions of Community-Dwelling Elderly Individuals.

In the gender-specific analysis, a significant cognitive enhancement was observed in the Montreal Cognitive Assessment (MoCA) score in the active group of women. In dietary analysis, we found a significant inverse correlation between consumption of vitamin K in daily diet, excluding test drinks, and change in MoCA. The present study suggests that daily supplementation of Matcha Green Tea Powder has protective effects against cognitive decline in community-dwelling elderly women.

–  Comparative Analysis of Antioxidant and Anti-Amyloidogenic Properties of Various Polyphenol Rich Phytoceutical Extracts.

This study compares three plants, traditionally used for numerous medicinal purposes in Asian countries, including: Curcuma longa (Turmeric), Camellia sinensis (Green Tea), and Scoparia dulcis (Sweet Broomweed). Antioxidant effects of the crude, polyphenol rich phytoceutical extracts from these plants were analyzed using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The ability of these extracts to prevent Aβ fibril formation was then carried out in order to establish a relationship between antioxidant activity and Aβ aggregation. A positive correlation between antioxidant efficacy and prevention of Aβ aggregation was demonstrated, indicating that antioxidant activity may play some role in preventing Aβ aggregation.  

5. Sarcopenie

Impacts of Green Tea on Joint and Skeletal Muscle Health: Prospects of Translational Nutrition.

This review covers (i) the prevalence and etiology of osteoarthritis and sarcopenia, such as excessive inflammation and oxidative stress, mitochondrial dysfunction, and reduced autophagy; (ii) the effects of green tea catechins on joint health by downregulating inflammatory signaling mediators, upregulating anabolic mediators, and modulating miRNAs expression, resulting in reduced chondrocyte death, collagen degradation, and cartilage protection; (iii) the effects of green tea catechins on skeletal muscle health via maintaining a dynamic balance between protein synthesis and degradation and boosting the synthesis of mitochondrial energy metabolism, resulting in favorable muscle homeostasis and mitigation of muscle atrophy with aging; and (iv) the current study limitations and future research directions.

  • Green Tea Extract Preserves Neuromuscular Activation and Muscle Damage Markers in Athletes Under Cumulative Fatigue.

Effects of supplementation were tested during repeated trials of submaximal cycling at 60% of peak power output performed after a protocol for cumulative fatigue of knee extensors. Muscle damage and oxidative stress showed lower magnitudes in response to fatigue after GTE supplementation. Placebo group showed impaired neuromuscular activity and higher muscle damage and oxidative stress compared to the GTE group during the cycling trials under fatigue. In summary, GTE supplementation showed positive effects on neuromuscular function in response to a condition of cumulative fatigue. It suggests GTE supplementation may have potential to serve as a strategy to improve performance and recovery in conditions of cumulative exercise.

6. Diabetes

  • Additive effects of green tea and coffee on all-cause mortality in patients with type 2 diabetes mellitus: the Fukuoka Diabetes Registry.

Higher consumption of green tea and coffee was associated with reduced all-cause mortality: their combined effect appeared to be additive in patients with type 2 diabetes.

  • Green Tea Ameliorates Hyperglycemia by Promoting the Translocation of Glucose Transporter 4 in the Skeletal Muscle of Diabetic Rodents.

Green tea also reduced the plasma fructosamine and glycated hemoglobin concentrations in both models. Furthermore, it increased glucose uptake into the skeletal muscle of both model animals, which was accompanied by greater translocation of glucose transporter 4 (GLUT4). Moreover, epigallocatechin gallate (EGCG), the principal catechin in green tea, also ameliorated glucose intolerance in high-fat diet-induced obese and diabetic mice. These results suggest that green tea can ameliorate hyperglycemia in diabetic rodents by stimulating GLUT4-mediated glucose uptake in skeletal muscle, and that EGCG is one of the effective compounds that mediate this effect.

7. Covid-19

Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19?

Since EGCG can restore the natural immunological homeostasis in many different autoimmune diseases, we propose here a supplementation therapy with EGCG in COVID-19 patients. Besides some antiviral and anti-sepsis actions, the major EGCG benefits lie in its anti-fibrotic effect and in the ability to simultaneously downregulate expression and signaling of many inflammatory mediators. In conclusion, EGCG can be considered a potential safe natural supplement to counteract hyper-inflammation growing in COVID-19.

8. Hypercholesterinämie

  • Effect of green tea consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials.

Collectively, consumption of green tea lowers LDL cholesterol and TC, but not HDL cholesterol or triglycerides in both normal weight subjects and those who were overweight/obese; however, additional well-designed studies that include more diverse populations and longer duration are warranted.  

    – Curcumin as a permeability enhancer enhanced the antihyperlipidemic activity of dietary green tea extract.

Curcumin enhanced permeability of EGCG. Therefore, P-glycoprotein pump inside intestine can be potential mechanism to enhance permeability of EGCG. Thus, EGCG-curcumin herbal tea bag is promising nutraceutical to treat hyperlipidemia in day-to-day life achieving patient compliance.

9. Adipositas

  • Kosen-cha, a Polymerized Catechin-Rich Green Tea, as a Potential Functional Beverage for the Reduction of Body Weight and Cardiovascular Risk Factors: A Pilot Study in Obese Patients.

Overall, kosen-cha reduced obesity and improved insulin resistance, vascular function, and cardiac hypertrophy, indicating its preventive potential in obesity and metabolic syndrome.   

  • RNA-seq Based Transcriptome Analysis of the Anti-Obesity Effect of Green Tea Extract Using Zebrafish Obesity Models.

GTE significantly decreased the visceral adipose tissue volume induced by a high-fat diet. Oral administration (250 µg/g body weight/day) of GTE to adult diet-induced obese zebrafish also significantly reduced their visceral adipose tissue volume, with a reduction of plasma triglyceride and total cholesterol levels. To investigate the molecular mechanism underlying the GTE effects, we conducted RNA sequencing using liver tissues of adult zebrafish and found that GTE may ameliorate the obese phenotypes via the activation of Wnt/β-catenin and adenosine monophosphate-activated protein kinase (AMPK) pathway signaling. In addition, the comparative transcriptome analysis revealed that zebrafish and mammals may share a common molecular response to GTE. Our findings suggest that daily consumption of green tea may be beneficial for the prevention and treatment of obesity.

  • EGCG Reduces Obesity and White Adipose Tissue Gain Partly Through AMPK Activation in Mice.

By measuring the mRNA expression levels of genes involved in lipid metabolism, we found that EGCG inhibited the expression of genes involved in the synthesis of de novo fatty acids (acc1, fas, scd1, c/ebpβ, pparγ, and srebp1) and increased the expression of genes associated with lipolysis (hsl) and lipid oxidization in white adipose tissue, in both the HFD and the EGCG groups. However, EGCG significantly increased the expression of genes involved in the synthesis of de novo fatty acids compared with the HFD group. Increased AMPK activity was found in both subcutaneous and epididymal adipose tissues. In conclusion, EGCG can decrease obesity and epididymal white adipose tissue weight in mice, only partially via activation of AMPK.

  • Saturated fatty acid attenuates anti-obesity effect of green tea

These differences would be associated with the increasing action of GTE on expression of PPARδ signaling pathway-related genes in the white adipose tissue. Expressions of genes relating to EGCG signaling pathway that is critical for exhibition of physiological effects of EGCG were also associated with the different effects of GTE. Here, we show that anti-obesity effect of GTE differs depending on types of fats or fatty acids that consist HF diet and could be attenuated by saturated fatty acid.

  • Inhibitory Effect of (-)-Epigallocatechin-3-O-gallate on Octanoylated Ghrelin Levels in Vitro and in Vivo.

EGCG significantly reduced the octanoylated ghrelin level in AGS-GHRL8 cells. In mice, three days of treatment with TEAVIGO®, which contains 97.69% EGCG, lowered the plasma octanoylated ghrelin level by 40% from that in control mice. In addition, TEAVIGO® reduced the mRNA expression of ghrelin and prohormone convertase 1/3, an enzyme responsible for the processing of proghrelin to mature ghrelin, in the mouse stomach, suggesting that the reduced expression of these genes may contribute to the inhibition of octanoylated ghrelin production. These results suggest a decrease in the octanoylated ghrelin level to be involved in the anti-obesity effect of EGCG, which thus has potential for the development of anti-obesity agents with ghrelin-lowering effect.

10. Viruskrankheiten

A total of 255 subjects were analyzed (placebo group n = 86, low-catechin group n = 85, high catechin group n = 84). The URTI incidence rate was 26.7% in the placebo group, 28.2% in the low-catechin group, and 13.1% in the high-catechin group (log rank test, p = 0.042). The hazard ratio (95% confidence interval (CI)) with reference to the placebo group was 1.09 (0.61-1.92) in the low-catechin group and 0.46 (0.23-0.95) in the high-catechin group. These findings suggest that catechins combined with xanthan gum protect against URTIs.    

We propose a newly developed EGCG-fatty acid derivative in which the fatty acid on the phenolic hydroxyl group would be expected to increase viral and cellular membrane permeability. EGCG-fatty acid monoesters showed improved antiviral activities against different types of viruses, probably due to their increased affinity for virus and cellular membranes. Our study promotes the application of EGCG-fatty acid derivatives for the prevention and treatment of viral infections.

Of these catechins, EGCG and EGC are found in the highest amounts in green tea and have been the subject of most of the studies. These catechins have been shown to demonstrate a variety of antimicrobial properties, both to organisms affected and in mechanisms used. Consumption of green tea has been shown to distribute these compounds and/or their metabolites throughout the body, which allows for not only the possibility of treatment of infections but also the prevention of infections.

Experimental studies have reported that tea catechins inhibited influenza viral adsorption and suppressed replication and neuraminidase activity. They were also effective against some cold viruses. In addition, tea catechins enhance immunity against viral infection. Although the antiviral activity of tea catechins has been demonstrated, the clinical evidence to support their utility remains inconclusive. Since the late 1990s, several epidemiological studies have suggested that the regular consumption of green tea decreases influenza infection rates and some cold symptoms, and that gargling with tea catechin may protect against the development of influenza infection. This review briefly summarizes the effect of tea catechins on influenza infection and the common cold with a focus on epidemiological/clinical studies, and clarifies the need for further studies to confirm their clinical efficacy.

In this study, we focused on the antiviral properties of catechins and their derivatives against viral hepatitis which have become a key public health issue due to their serious impact on human health with liver diseases.

11. Depressionen

Catechin ameliorates depressive symptoms in Sprague Dawley rats subjected to chronic unpredictable mild stress by decreasing oxidative stress.

Thus, it was concluded that catechin reverses CUMS-induced depression in rats by ameliorating oxidative stress, which may help to develop a novel treatment for major depressive disorder.

12.  Neurodegenerative Krankheiten

Function of Green Tea Catechins in the Brain: Epigallocatechin Gallate and its Metabolites.

These results suggest that metabolites of EGCG may play an important role, alongside the beneficial activities of EGCG, in reducing neurodegenerative diseases. In this review, we discuss the function of EGCG and its microbial ring-fission metabolites in the brain in suppressing brain dysfunction. Other possible actions of EGCG metabolites will also be discussed.

13. Gichtanfall

Epigallocatechin-3-Gallate Prevents Acute Gout by Suppressing NLRP3 Inflammasome Activation and Mitochondrial DNA Synthesis.

These results show that EGCG suppresses the activation of the NLRP3 inflammasome in macrophages via the blockade of mitochondrial DNA synthesis, contributing to the prevention of gouty inflammation. The inhibitory effects of EGCG on the NLRP3 inflammasome make EGCG a promising therapeutic option for NLRP3-dependent diseases such as gout.

14. Kardiomyopathie

Green tea extract catechin improves cardiac function in pediatric cardiomyopathy patients with diastolic dysfunction.

This study indicates that Ca2+ desensitizing green tea extract catechin, is helpful in correcting the impaired relaxation in pediatric cardiomyopathy patients with diastolic dysfunction.

15. Aktinische Keratose

A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy.

Additionally, green tea polyphenols induce autophagy, thereby revitalizing the overall health of the organism consuming it. Green tea was able to activate autophagy in HL-60 xenographs by increasing the activity of PI3 kinase and BECLIN-1. This manuscript describes the reported anti-photoaging, stress resistance, and neuroprotective and autophagy properties of one of the most widely known functional foods-green

16. Alterung

Green tea supplementation promotes leukocyte telomere length elongation in obese women.

The supplementation was carried out with capsules (each contained 450.7 mg of epigallocatechin-3-gallate) during eight weeks. Anthropometric and dietary intake assessment, and blood collection (for biochemical and TL analysis by quantitative PCR) were performed before and after supplementation. Normal weight patients were evaluated at a single moment.Results: we observed a significant increase on TL after supplementation (1.57 ± 1.1 to 3.2 ± 2.1 T/Sratio; p < 0.05). Moreover, we found shorter TL in obese patients (day 0) when compared to normal weight individuals (3.2 ± 1.9 T/Sratio; p < 0.05) and an inverse association between TL and BMI, even after age adjustment (beta = -0.527; r² = 0.286; IC = -0.129, -0.009).Conclusion: obesity is related to shorter telomeres. Green tea supplementation during eight weeks promotes telomere elongation in obese women.

17. Hypertonie

(-)-Epicatechin Reduces Blood Pressure and Improves Left Ventricular Function and Compliance in Deoxycorticosterone Acetate-Salt Hypertensive Rats.

Serum malondialdehyde concentration was used as a marker of oxidative stress. Myocardial stiffness was increased and left ventricular compliance significantly diminished in the DOCA control group, and these changes were attenuated by epicatechin treatment (p < 0.05). Additionally, the DOCA + E rats showed significantly reduced blood pressure and malondialdehyde concentrations; however, there was no improvement in left ventricular hypertrophy, electrophysiology or vascular function. This study demonstrates the ability of epicatechin to reduce blood pressure, prevent myocardial stiffening and preserve cardiac compliance in hypertrophied DOCA-salt rat hearts.

18. Arteriosklerose

(-)-Epigallocatechin-3-Gallate Ameliorates Atherosclerosis and Modulates Hepatic Lipid Metabolic Gene Expression in Apolipoprotein E Knockout Mice: Involvement of TTC39B.

EGCG administration markedly attenuated atherosclerotic plaque formation in HFD-fed ApoE-/- mice, which were accompanied by increased plasma interleukin-10 (IL-10) level and decreased plasma IL-6 and tumor necrosis factor-α (TNF-α) levels. In addition, EGCG modulated high-fat-induced dyslipidemia, evidencing by decreased total cholesterol (TC) and low-density lipoprotein levels and increased high-density lipoprotein level.

19. Hashimoto’s thyroiditis

Neuroprotective effect of (-)-epigallocatechin-3-gallate on autoimmune thyroiditis in a rat model by an anti-inflammation effect, anti-apoptosis and inhibition of TRAIL signaling pathway.

 In conclusion, these results suggested that the neuroprotective effect of EGCG protects against AIT through its anti-inflammatory ability, anti-apoptosis and TRAIL signaling pathway in model rats, and it may be used as a therapeutic agent against AIT caused by inflammation.



Catechins act as anti-inflammatories, antimicrobials, immunomodulators, regulators of ROS production, antioxidants, free radical scavengers, neuroprotective agents, anti-ageing, protectors of the circulatory system and cardiac tissues

Catechins have strong anti-adipogenesis and anti-differentiation effects on mature adipocytes

Catechin synergistically potentiates mast cell-stabilizing property of caffeine.




Es gibt noch keine Kommentare.

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:


Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )


Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )


Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s

%d Bloggern gefällt das: